Churn Prediction Using Machine Learning and Recommendations Plans for Telecoms
نویسندگان
چکیده
منابع مشابه
A Survey on Customer Churn Prediction using Machine Learning Techniques
The fast expansion of the market in every sector is leading to superior subscriber base for service providers. Added competitors, novel and innovative business models and enhanced services are increasing the cost of customer acquisition. In such a fast set up, service providers have realized the importance of retaining the on-hand customers. It is therefore essential for the service providers t...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملIncremental Learning for Large Scale Churn Prediction
Modern companies accumulate a vast amount of customer data that can be used for creating a personalized experience. Analyzing this data is difficult and most business intelligence tools cannot cope with the volume of the data. One example is churn prediction, where the cost of retaining existing customers is less than acquiring new ones. Several data mining and machine learning approaches can b...
متن کاملAnalysis of Customer Churn prediction in Logistic Industry using Machine Learning
Customer churn prediction in logistics industry is one of the most prominent research topics in recent years. It consists of detecting customers who are likely to cancel a subscription to a service. Recently, logistics market has changed from a rapidly growing market into a state of saturation and fierce competition. The focus of the logistic companies has therefore shifted from building a larg...
متن کاملChurn Prediction using Complaints Data
The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn. Keywords—Churn, Neural Networks, Regression,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and Communications
سال: 2019
ISSN: 2327-5219,2327-5227
DOI: 10.4236/jcc.2019.711003